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Abstract. In this paper, we consider the approximate solution of the following problem 
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To solve this problem, we introduce a new nonstandard time discretization scheme. A proof of convergence of the 

approximate solution is given and error estimates are derived. The numerical results obtained by the suggested tech-
nique are compared with the exact solution of the problem. The numerical solution displays the expected conver-

gence to the exact one as the mesh size is refined; the numerical solution displays the expected convergence to the 

exact one as the mesh size is refined. The numerical solution displays the expected convergence to the exact one as 

the mesh size is refined. 
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1. Introduction 

 
The principal aim of this paper is to describe an approximate solution for a parabolic integro-differential equa-

tion representing heat conduction in material with positive memory. Classically, a heat conduction phenomenon is 

represented by a parabolic partial differential equation with an infinite heat propagation speed; this is a puzzling con-

tradiction to the physics. Indeed, the material property of the past influences on that of the present, and therefore the 

heat propagation can be better understood if it is represented by an integro-differential equation rather than it is mod-

eled by the usual parabolic equations. 

It is essential to take into account the effect of past history while describing the system as a function at a giv-

en time. Consider for example, a physical situation which gives rise to a parabolic partial integro-differential equation 

of the form 
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where 
nR  is a connected bounded domain with smooth boundary ,  is a feedback heat control in the interior 

of some heat conduction medium, where the control mechanism possesses some intertia or a similar control situation 

for a reaction-diffusion problem. In the analysis of space time dependent nuclear reactor dynamics, if the effect of a 

linear temperature feedback is taken into consideration and the reactor model is considered as an infinite rod, then the 

one group neutron flux ),( xty  and the temperature ),( xt  in the reactor are given by the following coupled equation 

(see [1]): 
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where a is the diffusion coefficient and )3,2,1(,,,,   icc igf  are physical quantities. By integrating the se-

cond equation in (1.4) in the interval ),0( t  and substituting it into the first equation, we obtain the following nonline-

ar integro-differential equation: 

bydrxryyyxk
t

y t

xx 
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where β, b are the constants associated with the initial temperature and various physical parameters. However, in the 

actual reactor systems, the temperature is a function of position ,x  which may be one, two or three dimensional. 

Thus it is more realistic to consider the heat equation for y in a higher dimensional spatial domain (see [2-5]). Here we 

consider a more general system of integro-differential equations of the form: 
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where   is a connected bounded domain in nR  with smooth boundary   and  

.)()()( 0
11,

2

yxa
x

y
xa

xx

y
xayL

n

i i
i

n

ji ji
ij 









 



                                      (1.10) 

The existence, uniqueness and asymptotic behavior of solutions of the system of the form (1.1)-(1.3) have been stud-

ied in [3]. This problem governs many physical systems occurring in diffusion problems and includes (1.4) and (1.5) 
as a special case. 

In this paper, we study the equations which arise in many applications (e.g., [6, 7] and the references).  
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where  is a constant advection velocity and k a constant diffusivity, the integral is called memory term, ),( sxk  is the 

kernel function satisfying 

,)(),(),(max sxKsxACsxk
Ix

 


                                                 (1.14) 

Where A is sufficiently smooth in x and s, and the Hammerstein kernel 















otherwise,),(

10,)(
)(

sxK

sx
sxK                                           (1.15) 

K is smooth function,  
  )()( sxsxK  is said to be weakly singular kernel. 

Solution of Integro-partial differential equations has recently attracted much attention of research. The motivation 

for such problems lies in different branches of physics, in rtheology, and especially in the theory of parabolic type. 

There are several methods for solving integro-differential equations, in (1988) E. G. Yanik and G. Fairweather use 

finite element methods for solving integro-differential equation of parabolic type [8]. In (1989) M. N. Leroux and V. 

Thomèe use Numerical solution of semilinear integro-differential equations of parabolic type with non smooth data 

[9]. The stability of Ritz-Volterra projections and error estimates for finite element methods for a class of integro-
differential equations of parabolic type is studied by Y. Lin and T. Zhang [10]. In (992), A. K. Pani, V. Thomèe, and 

L.B. Wahlbin use Numerical methods for hyperbolic and parabolic integro-differential equations [11]. Global and 

blow-up solutions of a class of semilinear integro-differential equation, by Cui Shang-bin and Ma Yu-lan in (1994) 

[12]. I. H. Sloan and V. Thomèe, use Time discretization of an integro-differential equation of parabolic type [13]. 

Our contribution in this paper is to develop a new algorithm for solving partial integro-differential equations in 

one dimensional space with non-homogeneous Dirichlet boundary conditions. The suggested numerical scheme starts 

with the discretization in time by the 2-point Euler backward finite difference method. After that we deal with a com-

bination of the compact finite difference method and the trapezoidal rule for calculating the integral term and then we 

use a collocation method to compute the unknown function and finally the obtained system of algebraic equations is 

solved by iterative methods. The proposed technique is programmed using Matlab ver. 7.8.0.347 (R2009a. 

The paper is organized as follows: Section 2 is devoted to introducing the definition of the spline function. Sec-
tion 3 is devoted to describe and analyze a time discretization scheme. Section 4 concerns the error estimates for the 
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approximate solution. The numerical solution of the partial integro-differential equation by using the collocation 

method is stated in section 5. In Section 6, the proposed scheme is directly applicable to solve some numerical exam-

ple to support the efficiency of the suggested numerical scheme. Conclusions are drawn in Section 7. 

 
2. The Sixth-Degree B-Splines 

In this section, sixth-degree B-splines are used to construct numerical solutions to the partial integro-differential 

problem discussed in section 4. A detailed description of B-spline functions generated by subdivision can be found in 

[13]. Consider equally-spaced knots of a partition bxxxa n  10:  on ],[ ba . Let ][6 S  be the space of 

continuously-differentiable, piecewise, sixth-degree polynomials on .  That is, ][6 S  is the space of sixth-degree 

spline on .  Consider the B-spline basis in ].[6 S  The B-splines are defined in [13] as 
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To solve integro-partial differential equations, the iB  and their derivatives, evaluated at the nodal points, are needed. 

Their coefficients are given in Table 1. 

 

Table 1. Coefficients of iB  and its derivatives. 

 ix  1ix  2ix  3ix  4ix  5ix  6ix  7ix  

iB  0 1 57 302 302 57 1 0 
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3. Notations, Assumptions And Definitions 

 

In this section we present several notations and assumptions that will be used in the sequel. We use the standard 

functional spaces )(2 L , )}(;{ )(
2  kWV  on   the sense of traces,  )(; 2 LIC ,  )(; 22 LIL  (see e.g. [14], 

[15]). By  .,.  we shall denote either the inner product in )(2 L  or the duality between V and V  (dual of V).  We 

denote by . ,  . , 


 . , the. norms in )(2 L , V, and V , respectively. All the constants which occur in the course 

of this paper will be denoted by C ( ) is small and )( 1
  CC ). Also, we introduce some notations concerning the 

time discretization of our problem. 
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We will assume, throughout this work, the following hypotheses on the given data. 

(H1)  The kernel ),,( utxK  is Lipschitz continuous in the variables t and u in the following sense: 

 ,),,(),,( 12121122 uuttCutxKutxK 


                                       (3.3) 

and it satisfies 

  )(,,0 2  LKVuTIt                                                     (3.4) 

(H2)  )(200  LuVu  

Under these assumptions, we can define the variational solution of problem (1.11)-(1.13). 

Definition 2.1 The measurable function     ,,, 2  LICVILu  with     ,, 22  LILtu  and   00 u  in 

  2,LIC  is said to be a weak (variational) solution of (1.11)(1.13) if and only if the integral identity 
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4. The Semidiscretization Scheme. A Prioi Estimates 
 

Our main goal is to approximate (1.11)(1.13) from a numerical point of view and to prove its convergence. The 
suggested technique is based on the combination of the characteristics and Roth methods. Using a 2-point Euler 

backward differentiation formula for the time derivative and then applying the characteristic method to compensate 

the convection term which is discretized explicitly so that the underlying equation is converted into a linear system of 

algebraic equations that easily solved numerically at each subsequent time level. To this purpose, let n be a positive 

integer. Subdivide the time interval I by the points it , where  iti , nT , ni  ,,1 ,0  . The suggested discreti-

zation scheme of problem (2.5) consists of the following problem (in the weak sense):  

Find niVtuz ii ,,1,)(.,   such that 
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where ),,()(),,( 1111 stksktxzz iiii    and ).,()( 11 xtfxf ii    

The later integral will be handled numerically using the composite weighted trapezoidal rule given by: 
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The substitutions of this equation into equation (4.3) yields 
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5. The Spline-Collocation Method 

 

In this section a spline method for solving (4.6) is outlined, which is based on the collocation approach. Let 

)(xZi  be a function that approximates ),( itxz  for the time-level , iti  and is a linear combination of n+1 shape 

functions which is expressed as: 
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0

 are the unknown real coefficients, to be evaluated, and the )(xBm  are sixth-degree B-spline. The ap-

proximate solutions )(xzi  for different time-levels are determined iteratively as follows. Starting with the time-level 

,00 t  the value of ),( and),( 00 jj xzxz  for 1,,2,1  nj   are known. Next, we will approximate the solution 1iz  

for i = 0 in equation (4.6) by the shape functions ,1Z  as is given in equation (5.1). Hence equation (4.6) is approxi-

mated by: 
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Replacing 1Z  by the approximate solution given by equation (5.1) yields the following linear system of 1n  equa-

tions  
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Putting 1,,1,  njxx j  , where  
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In such a case we have hjax j   for ,,2,1,0 nj   so equation (5.3), rewrite as 

  ).()0()()()())()1(1( 01
2*

0111
2

0
1 jijjmjm

n

m
m xzkwzxfxBxBtkwc 



                     (5.4) 

The system (5.4) consists of  1n  equation in the  1n  unknowns  n

mmc
01 

. To get a solution of this system we 

need two additional conditions. These conditions are obtained from the boundary conditions (1.12) 
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The system (5.4), equations (5.5) and (5.6) consist of  1n  equations in  1n  unknowns; this system is of the form 

.FAC                                                                                 (5.7) 

Upon solving the system (5.7), the function )(1 xZ  is approximated by the sum: 
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Next, we find the approximate solution at time-levels ,, 21 tt  recursively by solving the following system for 

.,2,1 i  
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6. Numerical Results 

In this section, we shall solve integro-differential equation (1.11) in ).,0()1,0( TQT   We employ an explicit 

central difference scheme for the space derivative so that we get a full discretization scheme with an error estimation 

).()( 2 OhO  The boundary and initial conditions we have used in this experiment are 0,0),1(),0(  ttutu   

and 10)sin()0(  xxx,u  for which the theoretical solution is )sin(
2

xet)u(x, tπ   , and 

)sin(),(
2

x t etxf t-π   and )(2

),( sx-πetxk   We shall compare the results obtained by the suggested approxima-

tion scheme (3.1)-(3.3) with the exact. It is observed that all the results of the proposed approximation scheme are in 

good agreement with the exact ones and exhibit the expected convergence. 

 

 

Table 2.  Comparison between exact and numerical solutions at 02.0t , 1 , 0001.0  and 01.0t , 1 , 

0001.0 , respectively. 

x 02.0t , 1  0001.0  01.0t , 1  0001.0  

 
Exact solu-

tion 

Suggested 

scheme 

error Exact solution Suggested 

scheme 

error 

0 0 0 0 0 0 0 

0.17 4.104E-001 4.111E-001 6.353E-004 4.530E-001 4.537E-001 7.016E-004 

0.33 7.108E-001 7.115E-001 6.192E-004 7.846E-001 7.853E-001 6.842E-004 

0.5 8.208E-001 8.214E-001 5.702E-004 9.060E-001 9.066E-001 6.303E-004 

0.67 7.108E-001 7.114E-001 5.3021E-004 7.846E-001 7.852E-001 5.859E-004 

0.83 4.104E-001 4.108E-001 4.196E-004 4.530E-001 4.535E-001 4.635E-004 

1 0 0 0 0 0 0 

 

 

Table 3.  Comparison between exact and numerical solutions at 1.0t , 1 , 00001.0  and 5.0t , 1 , 

01.0 , respectively. 

x 1.0t , 1 , 1  , 0001.0  5.0t , 1 , 01.0  

 
Exact solution Suggested 

scheme 

error Exact solution Suggested 

scheme 

error 

0 0 0 0 0 0 0 

0.17 1.864E-001 1.864E-001 2.873E-005 3.596E-003 4.316E-003 7.196E-004 

0.33 3.228E-001 3.228E-001 2.786E-005 6.228E-003 6.794E-003 5.660E-004 

0.5 3.727E-001 3.727E-001 2.559E-005 7.192E-003 7.693E-003 5.013E-004 

0.67 3.228E-001 3.228E-001 2.380E-005 6.228E-003 6.696E-003 4.672E-004 

0.83 1.864E-001 1.864E-001 1.888E-005 3.596E-003 3.987E-003 3.912E-004 

1 0 0 0 0 0 0 

 

 

Table 4.  Comparison between exact and numerical solutions at 3.0t , 4.0 , 00005.0  and 7.0t , 3 , 

04.0 , respectively. 

x 3.0t , 4.0 , 00005.0  7.0t , 3 , 04.0  

 
Exact solution Suggested 

scheme 

error Exact solution Suggested 

scheme 

error 

0 0 0 0 0 0 0 

0.17 2.589E-002 2.591E-002 1.816E-005 4.995E-004 1.618E-002 1.568E-002 

0.33 4.484E-002 4.486E-002 1.818E-005 8.652E-004 1.822E-003 9.572E-004 

0.5 5.177E-002 5.179E-002 1.729E-005 9.990E-004 7.164E-004 2.826E-004 

0.67 4.484E-002 4.485E-002 1.694E-005 8.652E-004 7.362E-004 1.290E-004 

0.83 2.589E-002 2.590E-002 1.491E-005 4.995E-004 5.472E-004 4.767E-005 

1 0 0 0 0 0 0 
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7. Conclusion 

A collocation B-spline method has been considered for the numerical solution of integro-partial differential prob-

lems. The sixth-degree B-spline method was tested by problem. The method reduces the underlying problem to linear 

system of algebraic equations, which can be solved successively to obtain a numerical solution at varied time-levels. 

Numerical experiments which shown in the above scheme are good agreement with the exact ones. Moreover, the 

results in tables 2-4 and confirm that the numerical solutions can be refined when the time-step τ is reduced, or the 

number of nodes is increased. 
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